Перевод: со всех языков на английский

с английского на все языки

simplified time history

  • 1 simplified time history

    Engineering: STH

    Универсальный русско-английский словарь > simplified time history

  • 2 упрощённый график изменения процесса во времени

    1. STH
    2. simplified time history

     

    упрощённый график изменения процесса во времени

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > упрощённый график изменения процесса во времени

  • 3 упрощённая временная диаграмма

    Универсальный русско-английский словарь > упрощённая временная диаграмма

  • 4 Hamilton, Harold Lee (Hal)

    [br]
    b. 14 June 1890 Little Shasta, California, USA
    d. 3 May 1969 California, USA
    [br]
    American pioneer of diesel rail traction.
    [br]
    Orphaned as a child, Hamilton went to work for Southern Pacific Railroad in his teens, and then worked for several other companies. In his spare time he learned mathematics and physics from a retired professor. In 1911 he joined the White Motor Company, makers of road motor vehicles in Denver, Colorado, where he had gone to recuperate from malaria. He remained there until 1922, apart from an eighteenth-month break for war service.
    Upon his return from war service, Hamilton found White selling petrol-engined railbuses with mechanical transmission, based on road vehicles, to railways. He noted that they were not robust enough and that the success of petrol railcars with electric transmission, built by General Electric since 1906, was limited as they were complex to drive and maintain. In 1922 Hamilton formed, and became President of, the Electro- Motive Engineering Corporation (later Electro-Motive Corporation) to design and produce petrol-electric rail cars. Needing an engine larger than those used in road vehicles, yet lighter and faster than marine engines, he approached the Win ton Engine Company to develop a suitable engine; in addition, General Electric provided electric transmission with a simplified control system. Using these components, Hamilton arranged for his petrol-electric railcars to be built by the St Louis Car Company, with the first being completed in 1924. It was the beginning of a highly successful series. Fuel costs were lower than for steam trains and initial costs were kept down by using standardized vehicles instead of designing for individual railways. Maintenance costs were minimized because Electro-Motive kept stocks of spare parts and supplied replacement units when necessary. As more powerful, 800 hp (600 kW) railcars were produced, railways tended to use them to haul trailer vehicles, although that practice reduced the fuel saving. By the end of the decade Electro-Motive needed engines more powerful still and therefore had to use cheap fuel. Diesel engines of the period, such as those that Winton had made for some years, were too heavy in relation to their power, and too slow and sluggish for rail use. Their fuel-injection system was erratic and insufficiently robust and Hamilton concluded that a separate injector was needed for each cylinder.
    In 1930 Electro-Motive Corporation and Winton were acquired by General Motors in pursuance of their aim to develop a diesel engine suitable for rail traction, with the use of unit fuel injectors; Hamilton retained his position as President. At this time, industrial depression had combined with road and air competition to undermine railway-passenger business, and Ralph Budd, President of the Chicago, Burlington \& Quincy Railroad, thought that traffic could be recovered by way of high-speed, luxury motor trains; hence the Pioneer Zephyr was built for the Burlington. This comprised a 600 hp (450 kW), lightweight, two-stroke, diesel engine developed by General Motors (model 201 A), with electric transmission, that powered a streamlined train of three articulated coaches. This train demonstrated its powers on 26 May 1934 by running non-stop from Denver to Chicago, a distance of 1,015 miles (1,635 km), in 13 hours and 6 minutes, when the fastest steam schedule was 26 hours. Hamilton and Budd were among those on board the train, and it ushered in an era of high-speed diesel trains in the USA. By then Hamilton, with General Motors backing, was planning to use the lightweight engine to power diesel-electric locomotives. Their layout was derived not from steam locomotives, but from the standard American boxcar. The power plant was mounted within the body and powered the bogies, and driver's cabs were at each end. Two 900 hp (670 kW) engines were mounted in a single car to become an 1,800 hp (l,340 kW) locomotive, which could be operated in multiple by a single driver to form a 3,600 hp (2,680 kW) locomotive. To keep costs down, standard locomotives could be mass-produced rather than needing individual designs for each railway, as with steam locomotives. Two units of this type were completed in 1935 and sent on trial throughout much of the USA. They were able to match steam locomotive performance, with considerable economies: fuel costs alone were halved and there was much less wear on the track. In the same year, Electro-Motive began manufacturing diesel-electrie locomotives at La Grange, Illinois, with design modifications: the driver was placed high up above a projecting nose, which improved visibility and provided protection in the event of collision on unguarded level crossings; six-wheeled bogies were introduced, to reduce axle loading and improve stability. The first production passenger locomotives emerged from La Grange in 1937, and by early 1939 seventy units were in service. Meanwhile, improved engines had been developed and were being made at La Grange, and late in 1939 a prototype, four-unit, 5,400 hp (4,000 kW) diesel-electric locomotive for freight trains was produced and sent out on test from coast to coast; production versions appeared late in 1940. After an interval from 1941 to 1943, when Electro-Motive produced diesel engines for military and naval use, locomotive production resumed in quantity in 1944, and within a few years diesel power replaced steam on most railways in the USA.
    Hal Hamilton remained President of Electro-Motive Corporation until 1942, when it became a division of General Motors, of which he became Vice-President.
    [br]
    Further Reading
    P.M.Reck, 1948, On Time: The History of the Electro-Motive Division of General Motors Corporation, La Grange, Ill.: General Motors (describes Hamilton's career).
    PJGR

    Biographical history of technology > Hamilton, Harold Lee (Hal)

  • 5 McNaught, William

    [br]
    b. 27 May 1813 Sneddon, Paisley, Scotland
    d. 8 January 1881 Manchester, England
    [br]
    Scottish patentee of a very successful form of compounding beam engine with a high-pressure cylinder between the fulcrum of the beam and the connecting rod.
    [br]
    Although born in Paisley, McNaught was educated in Glasgow where his parents had moved in 1820. He followed in his father's footsteps and became an engineer through an apprenticeship with Robert Napier at the Vulcan Works, Washington Street, Glasgow. He also attended science classes at the Andersonian University in the evenings and showed such competence that at the age of 19 he was offered the position of being in charge of the Fort-Gloster Mills on the Hoogly river in India. He remained there for four years until 1836, when he returned to Scotland because the climate was affecting his health.
    His father had added the revolving cylinder to the steam engine indicator, and this greatly simplified and extended its use. In 1838 William joined him in the business of manufacturing these indicators at Robertson Street, Glasgow. While advising textile manufacturers on the use of the indicator, he realized the need for more powerful, smoother-running and economical steam engines. He provided the answer by placing a high-pressure cylinder midway between the fulcrum of the beam and the connecting rod on an ordinary beam engine. The original cylinder was retained to act as the low-pressure cylinder of what became a compound engine. This layout not only reduced the pressures on the bearing surfaces and gave a smoother-running engine, which was one of McNaught's aims, but he probably did not anticipate just how much more economical his engines would be; they often gave a saving of fuel up to 40 per cent. This was because the steam pipe connecting the two cylinders acted as a receiver, something lacking in the Woolf compound, which enabled the steam to be expanded properly in both cylinders. McNaught took out his patent in 1845, and in 1849 he had to move to Manchester because his orders in Lancashire were so numerous and the scope was much greater there than in Glasgow. He took out further patents for equalizing the stress on the working parts, but none was as important as his original one, which was claimed to have been one of the greatest improvements since the steam engine left the hands of James Watt. He was one of the original promoters of the Boiler Insurance and Steam Power Company and was elected Chairman in 1865, a position he retained until a short time before his death.
    [br]
    Bibliography
    1845, British patent no. 11,001 (compounding beam engine).
    Further Reading
    Obituary, Engineer 51.
    Obituary, Engineering 31.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (the fullest account of McNaught's proposals for compounding).
    RLH

    Biographical history of technology > McNaught, William

  • 6 Townsend, Matthew

    SUBJECT AREA: Textiles
    [br]
    b. Leicester (?), England
    d. after 1867 USA
    [br]
    English inventor of the latch needle for making seamless hose, and developer of ribbed knitting on circular machines.
    [br]
    Townsend, who described himself in his first patent as a framework knitter and afterwards as a hosier of Leicester, took out a patent in 1847 for the application of a "machine like that of a point net frame to an ordinary stocking-frame". He described needles and hooks of a peculiar shape which were able to take the work off the knitting machine, reverse the loops and return them again so that ribbed knitting could be made on circular machines. These became popular for knitting stockings which, although not fully fashioned, had sufficient strength to fit the leg. In 1854 he took out a patent for making round hose with heels and toes fashioned on other machines. In yet another patent, in 1856, he described a method of raising looped pile on knitted fabrics for making "terry" towelling fabrics. He could use different coloured yarns in the fabric that were controlled by a Jacquard mechanism. It was in the same year, 1856, in a further patent that he described his tumbler or latch needles as well as the making of figured patterns in knitting on both sides of the fabric with a Jacquard mechanism. The latch needles were self-acting, being made to move up and down or backwards and forwards by the action of cams set in the cylindrical body of the machine. Normally the needle worked in a vertical or inclined position with the previous loop on the shank below the latch. Weft yarn was placed in the hook of the needle. The needle was drawn down between fixed plates which formed a new loop with the weft. At the same time, the original loop already on the shank of the needle moved along the shank and closed the latch so that it could pass over the newly formed loop in the needle hook and fall over the end of the needle incorporating the new loop on its way to make the next row of stitches. The latch needle obviated the need for loop wheels and pressers and thus simplified the knitting mechanism. Townsend's invention was the forerunner of an entirely new generation of knitting machines, but it was many years before its full potential was realized, the bearded needle of William Lee being preferred because the hinge of the latch could not be made as fine as the bearded needle.
    Townsend was in the first rank of skilful manufacturers of fancy Leicester hosiery and had a good practical knowledge of the machinery used in his trade. Having patented his needles, he seems not to have succeeded in getting them into very profitable or extensive use, possibly because he fixed the royalty too high. His invention proved to be most useful and profitable in the hands of others, for it gave great impetus to the trade in seamless hose. For various reasons he discontinued his business in Leicester. He emigrated to the USA, where, after some initial setbacks, he began to reap the rewards of his skill.
    [br]
    Bibliography
    1847, British patent no. 11,899 (knitting machine). 1854, British patent no. 1,523 (seamless hose).
    1856, British patent no. 1,157 ("terry" towelling fabrics).
    1856, British patent no. 1,858 (latch needles and double-sided patterns on fabrics).
    Further Reading
    F.A.Wells, 1935, The British Hosiery and Knitwear Industry, London (mentions Townsend briefly).
    W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867) (a better account of Townsend).
    RLH

    Biographical history of technology > Townsend, Matthew

См. также в других словарях:

  • Time dilation — This article is about a concept in physics. For the concept in sociology, see time displacement. In the theory of relativity, time dilation is an observed difference of elapsed time between two events as measured by observers either moving… …   Wikipedia

  • History of Medicine —     History of Medicine     † Catholic Encyclopedia ► History of Medicine     The history of medical science, considered as a part of the general history of civilization, should logically begin in Mesopotamia, where tradition and philological… …   Catholic encyclopedia

  • Simplified Chinese characters — Simplified Chinese Type Logographic Languages Chinese Time period Since 1956 Parent systems …   Wikipedia

  • History of astronomy — History of science …   Wikipedia

  • Simplified (band) — Simplified Origin Charlotte, NC, United States Genres Rock, reggae fusion, roots rock Years active 2003–present Labels Hippizaz …   Wikipedia

  • History of Austria — This article is part of a series Early History …   Wikipedia

  • History of Chile — This article is part of a series Early History …   Wikipedia

  • History —    History on film can be either used in a visual way to display costumes and epic events for the sake of entertainment, or politically to reinforce a certain idea of the country. Spanish cinema has been prolific in both approaches, and at many… …   Guide to cinema

  • History —    History on film can be either used in a visual way to display costumes and epic events for the sake of entertainment, or politically to reinforce a certain idea of the country. Spanish cinema has been prolific in both approaches, and at many… …   Historical dictionary of Spanish cinema

  • History of Spanish — Spanish language …   Wikipedia

  • History of video games — Part of a series on …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»